Determination of geometric orientation of adsorbed cinchonidine on Pt and Fe and quiphos on Pt nanoclusters via DRIFTS.
نویسندگان
چکیده
Platinum nanoclusters modified with cinchonidine have been employed as 'quasi-homogeneous' catalysts for the hydrogenation of ethyl pyruvate and have demonstrated exceptional activities while the ee's of these systems are currently inferior to the traditional Pt/Al2O3 heterogeneous system. For the bulk systems it has been shown that the orientation of the modifier on the metal surface is a critical parameter influencing catalytically induced enantioselectivity. It has been speculated that the lower observed ee's for the nanocluster systems are a result of the modifier assuming an orientation unfavorable for inducing enantioselectivity due to the lack of large numbers of planar metal atoms. Using DRIFTS (diffuse reflectance infra-red Fourier transform spectroscopy) analysis of samples together with geometry optimization and IR modelling we have studied the orientation of cinchonidine on Pt and Fe nanoclusters and additionally the man-made ligand quiphos on Pt nanoclusters. It has been determined that cinchonidine can adsorb on Pt and Fe nanoclusters in both 'flat' and 'tilted' modes, while quiphos can be adsorbed on Pt only via the 'pi-bonded' mode. These studies thus provide an insight into modifier orientation on nanocluster surfaces that can be extended to a wide range of potential modifiers and facilitate a better understanding of the origin of enantioselectivity with these 'quasi-homogeneous' catalyst systems.
منابع مشابه
Oxygen reduction reaction on Pt/C at the presence of super paramagnetic of Fe3O4 nanoparticles for PEMFCs
In this paper the role of super paramagnetic iron oxide nanoparticles (SPI) on Platinum nanoclusters on activated carbon (Pt/C) for electrocatalytic oxygen reduction reaction was considered. Four composites of Pt/C and super paramagnetic iron oxide nanoparticles were prepared with the same total composites weight and different loading of Pt/C (1.2, 0.6, 0.4 and 0.3 mg ). The composite attached ...
متن کاملElectrooxidation of Formic Acid and Formaldehyde on the Fe3O4@Pt Core-Shell Nanoparticles/Carbon-Ceramic Electrode
In the present work, the electrooxidation of formic acid and formaldehyde; potentially important fuels for future fuel cells, was investigated on the Fe3O4@Pt core-shell nanoparticles/carbon-ceramic electrode (Fe3O4@Pt/CCE). The Fe3O4@Pt nanoparticles were prepared via a simple and fast chemical method and their surface morph...
متن کاملTime-lapse STM studies of diastereomeric cinchona alkaloids on platinum metals.
The adsorption of cinchonidine (CD) and cinchonine (CN) on Pt(111) and Pd(111) single crystals has been investigated by means of scanning tunneling microscopy (STM) in an ultrahigh vacuum system. In time-lapse series the mobilities of different adsorption species have been determined on a single molecule basis and with varying hydrogen background pressures in the system. The diastereomeric cinc...
متن کاملThe origin of chemo- and enantioselectivity in the hydrogenation of diketones on platinum.
In the Pt-catalyzed hydrogenation of 1,1,1-trifluoro-2,4-diketones, addition of trace amounts of cinchonidine, O-methyl-cinchonidine, or (R,R)-pantoyl-naphthylethylamine induces up to 93% ee and enhances the chemoselectivity up to 100% in the hydrogenation of the activated carbonyl group to an OH function. A combined catalytic, NMR and FTIR spectroscopic, and theoretical study revealed that the...
متن کاملEnhanced Electrocatalytic Activity of Pt-M (M= Co, Fe) Chitosan Supported Catalysts for Ethanol Electrooxidation in Fuel Cells
Here, metal nanoparticles were synthesized by chemical reduction of the corresponding metal salts in the presence of chitosan polymer. Binary and ternary metallic-chitosan Pt-Fe-CH, Pt-Co-CH and Pt-Fe-Co-CH nanocomposites were prepared. Transmission electron microscopy images and UV–Vis spectra of the nanocomposites confirmed the presence of the metal nanoparticles. The electrocatalytic activit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 8 11 شماره
صفحات -
تاریخ انتشار 2006